Geçirimsiz Toprak Yüzeyi Haritalaması, Son Gelişmeler ve Yeni Kullanım Olanakları
DOI:
https://doi.org/10.5281/zenodo.10800846Anahtar Kelimeler:
Geçirimsiz toprak yüzeyi, uzaktan algılama, haritalama, yapay zekâÖzet
Geçirimsiz toprak yüzeylerinin hem kırsal alanlar hem de şehirler üzerinde hidrolojik döngüyü bozarak yüzey akışının artmasına ve infiltrasyonun azalması gibi olumsuz etkileri vardır. Geçirimsiz toprak yüzeylerinin olumsuz etkilerinin azaltılması hem kırsal hem de kentsel alanlar için esnek ve yaşanabilir ortamların teşvik edilmesinde çok önemlidir. Bu çalışmanın amacı, geçirimsiz toprak yüzeyinin izlenmesi konusunda yapılmış olan araştırmalara dayanarak uzaktan algılama verileri ve yapay zekâ uygulamalarının entegrasyonu ile kentsel alanlarda geçirimsiz toprak yüzey haritalamasındaki son gelişmeleri ve arazi bozulması çalışmalarında kullanım olanaklarını ortaya koymaktır. Bu bağlamda literatür değerlendirildiğinde, geçirimsiz toprak yüzeylerin belirlenmesi ve sayısal olarak haritalanması çalışmaları hem uzaktan algılamadaki yüksek çözünürlüklü veri kaynaklarının artması hem de yapay zekânın büyük hacimli verileri kısa sürede ve yüksek doğrulukta değerlendirmesi ile ivme kazandığı görülmektedir. Özellikle optik uydu görüntülerinin birden çok bandının sinerjisi ile oluşturulan uzaktan algılama indeksleri ile spektral hataların azaltılmasına olanak tanımasıyla, geçirimsiz toprak yüzeylere özel olan yeni indeksler önerilmiştir. Bunun yanı sıra, derin öğrenme algoritmalarının yaygınlaşması ile yüksek doğruluğa sahip tahmini geçirimsiz yüzey envanter haritalarının elde edildiği görülmüştür. Gelecekte yapılacak olan araştırmalar, farklı türdeki uzaktan algılama verilerin entegrasyonu, tahmin algoritmaları için özellik veya ortak değişken seçim yöntemlerinin geliştirilmesi ve yeni derin öğrenme modelleri geliştirilmesi ile daha başarılı geçirimsiz yüzey haritaları elde etmeye odaklanmalıdır. Böylelikle hem kentsel hem de diğer arazi peyzajında karar vericiler ve planlamacılar gibi paydaşlara sürdürülebilir arazi planlaması için mekânsal veriler daha hızlı ve doğru bir şekilde sağlanabilecektir.
Referanslar
Arnold, C.L., Gibbons, C.J., 1996. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. Journal of the American Planning Association 62, 243–258. https://doi.org/10.1080/01944369608975688
Brun, S.., Band, L.., 2000. Simulating runoff behavior in an urbanizing watershed. Computers, Environment and Urban Systems 24, 5–22. https://doi.org/10.1016/S0198-9715(99)00040-X
Chang, M., Luo, X., Zhang, Y., Pang, Y., Li, M., Liu, J., Da, L., Song, K., 2022. Land-use diversity can better predict urban spontaneous plant richness than impervious surface coverage at finer spatial scales. Journal of Environmental Management 323, 116205. https://doi.org/10.1016/j.jenvman.2022.116205
Chang, R., Hou, D., Chen, Z., Chen, L., 2023. Automatic Extraction of Urban Impervious Surface Based on SAH-Unet. Remote Sensing 15, 1042. https://doi.org/10.3390/rs15041042
Chen, J., Chen, S., Yang, C., He, L., Hou, M., Shi, T., 2020. A comparative study of impervious surface extraction using Sentinel-2 imagery. European Journal of Remote Sensing 53, 274–292. https://doi.org/10.1080/22797254.2020.1820383
Dutta, D., Rahman, A., Paul, S.K., Kundu, A., 2021. Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Climate 37, 100799. https://doi.org/10.1016/j.uclim.2021.100799
Fang, H., Wei, Y., Dai, Q., 2019. A novel remote sensing index for extracting impervious surface distribution from Landsat 8 OLI imagery. Applied Sciences (Switzerland) 9. https://doi.org/10.3390/app9132631
Huang, F., Yu, Y., Feng, T., 2019. Automatic extraction of impervious surfaces from high resolution remote sensing images based on deep learning. Journal of Visual Communication and Image Representation 58, 453–461. https://doi.org/10.1016/j.jvcir.2018.11.041
Hurd, J.D., Civco, D.L., 2004. Temporal Characterization of impervious surfaces for the State of Connecticut, in: ASPRS Annual Conference Proceedings. p. Unpaginated CD ROM.
Li, C., Liu, M., Hu, Y., Zong, M., Zhao, M., Todd Walter, M., 2019. Characteristics of impervious surface and its effect on direct runoff: a case study in a rapidly urbanized area. Water Supply 19, 1885–1891. https://doi.org/10.2166/ws.2019.064
Li, M., Zang, S., Wu, C., Na, X., 2018. Spatial and temporal variation of the urban impervious surface and its driving forces in the central city of Harbin. Journal of Geographical Sciences 28, 323–336. https://doi.org/10.1007/s11442-018-1475-z
Liu, X., Hu, G., Ai, B., Li, X., Shi, Q., 2015. A Normalized Urban Areas Composite Index (NUACI) Based on Combination of DMSP-OLS and MODIS for Mapping Impervious Surface Area. Remote Sensing 7, 17168–17189. https://doi.org/10.3390/rs71215863
Long, X.Y., Shao, Z.F., Feng, X.X., 2020. URBAN IMPERVIOUS SURFACE EXTRACTION BASED on REMOTE SENSING IMAGES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42, 357–360. https://doi.org/10.5194/isprs-archives-XLII-3-W10-357-2020
Mohapatra, R.P., Wu, C., 2007. Subpixel imperviousness estimation with IKONOS imagery: An artificial neural network approach, in: Remote Sensing of Impervious Surfaces. pp. 21–37.
Mu, X., Qiu, J., Cao, B., Cai, S., Niu, K., Yang, X., 2022. Mapping Soil Erosion Dynamics (1990–2020) in the Pearl River Basin. Remote Sensing 14, 5949. https://doi.org/10.3390/rs14235949
Ostovari, Y., Ghorbani-Dashtaki, S., Kumar, L., Shabani, F., 2019. Soil erodibility and its prediction in semi-arid regions. Archives of Agronomy and Soil Science 65, 1688–1703. https://doi.org/10.1080/03650340.2019.1575509
Powell, S., Cohen, W., Yang, Z., Pierce, J., Alberti, M., 2007. Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972-2006. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2007.09.010
Schoonover, J.E., Crim, J.F., 2015. An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education 154, 21–47. https://doi.org/10.1111/j.1936-704x.2015.03186.x
Sekertekin, A., Abdikan, S., Marangoz, A.M., 2018. The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: a comparative analysis. Environmental Monitoring and Assessment 190. https://doi.org/10.1007/s10661-018-6767-3
Sekertekin, A., Zadbagher, E., 2021. Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecological Indicators 122, 107230. https://doi.org/10.1016/j.ecolind.2020.107230
Shahrokh, V., Khademi, H., Zeraatpisheh, M., 2023. Mapping clay mineral types using easily accessible data and machine learning techniques in a scarce data region: A case study in a semi-arid area in Iran. CATENA 223, 106932. https://doi.org/10.1016/j.catena.2023.106932
Shao, Z., Fu, H., Fu, P., Yin, L., 2016. Mapping urban impervious surface by fusing optical and SAR data at the decision level. Remote Sensing 8. https://doi.org/10.3390/rs8110945
Simwanda, M., Ranagalage, M., Estoque, R.C., Murayama, Y., 2019. Spatial analysis of surface urban heat Islands in four rapidly growing african cities. Remote Sensing 11. https://doi.org/10.3390/rs11141645
Song, Y., Li, F., Wang, X., Xu, C., Zhang, J., Liu, X., Zhang, H., 2015. The effects of urban impervious surfaces on eco-physiological characteristics of Ginkgo biloba: A case study from Beijing, China. Urban Forestry and Urban Greening 14, 1102–1109. https://doi.org/10.1016/j.ufug.2015.10.008
Su, S., Tian, J., Dong, X., Tian, Q., Wang, N., Xi, Y., 2022. An Impervious Surface Spectral Index on Multispectral Imagery Using Visible and Near-Infrared Bands. Remote Sensing 14. https://doi.org/10.3390/rs14143391
Sun, G., Chen, X., Jia, X., Yao, Y., Wang, Z., 2016. Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, 2081–2092. https://doi.org/10.1109/JSTARS.2015.2478914
Sun, G., Chen, X., Ren, J., Zhang, A., Jia, X., 2017. Stratified spectral mixture analysis of medium resolution imagery for impervious surface mapping. International Journal of Applied Earth Observation and Geoinformation 60, 38–48. https://doi.org/10.1016/j.jag.2017.04.006
Sun, Z., 2011. Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine. Journal of Applied Remote Sensing 5, 053501. https://doi.org/10.1117/1.3539767
Tang, F., Xu, H., 2017. Impervious surface information extraction based on hyperspectral remote sensing imagery. Remote Sensing 9. https://doi.org/10.3390/rs9060550
Tian, Y., Chen, H., Song, Q., Zheng, K., 2018. A Novel Index for Impervious Surface Area Mapping: Development and Validation. Remote Sensing 10, 1521. https://doi.org/10.3390/rs10101521
Valentin, C., Rajot, J.-L., Mitja, D., 2004. Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa. Agriculture, Ecosystems & Environment 104, 287–302. https://doi.org/10.1016/j.agee.2004.01.035
Wang, H., Zhang, Y., Tsou, J.Y., Li, Y., 2017. Surface urban heat island analysis of shanghai (China) based on the change of land use and land cover. Sustainability (Switzerland) 9. https://doi.org/10.3390/su9091538
Weng, Q., 2007a. Remote Sensing of Impervious Surfaces, Remote Sensing of Impervious Surfaces. https://doi.org/10.1201/9781420043754.fmatt
Weng, Q., 2007b. Remote sensing of impervious surfaces: An overview, in: Remote Sensing of Impervious Surfaces. pp. xv–xxvii.
Xian, G., 2007. Mapping impervious surfaces using classification and regression tree algorithm, in: Remote Sensing of Impervious Surfaces. pp. 39–58. https://doi.org/10.1201/9781420043754.ch3
Zha, Y., Gao, J., Ni, S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing 24, 583–594. https://doi.org/10.1080/01431160304987
Zheng, Z., Yang, B., Liu, S., Xia, J., Zhang, X., 2023. Extraction of impervious surface with Landsat based on machine learning in Chengdu urban, China. Remote Sensing Applications: Society and Environment 30, 100974. https://doi.org/https://doi.org/10.1016/j.rsase.2023.100974
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2024 Muhammed GÜNDOĞAN, Recep GÜNDOĞAN
Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.